1,647 research outputs found

    Noncontacting device to indicate deflection of turbopump internal rotating parts

    Get PDF
    Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included

    Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts

    Get PDF
    Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study

    Storage-ring measurement of the hyperfine induced 47Ti18+(2s 2p 3P0 -> 2s2 1S0) transition rate

    Get PDF
    The hyperfine induced 2s 2p 3P0 > 2s2 1S0 transition rate AHFI in berylliumlike 47Ti18+ was measured. Resonant electron-ion recombination in a heavy-ion storage ring was employed to monitor the time dependent population of the 3P0 state. The experimental value AHFI=0.56(3)/s is almost 60% larger than theoretically predicted.Comment: 4 pages. 3 figures, 1 table, accepted for publication in Physical Review Letter

    Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring

    Full text link
    Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe14+^{14+} forming Fe13+^{13+} and Fe15+^{15+}, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe14+^{14+} ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe14+^{14+} is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical Review

    Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions

    Get PDF
    We report measured rate coefficients for electron-ion recombination for Si10+ forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J. Phys. B special issue on atomic and molecular data for astrophysicist

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013

    Ion-lithium collision dynamics studied with an in-ring MOTReMi

    Get PDF
    We present a novel experimental tool allowing for kinematically complete studies of break-up processes of laser-cooled atoms. This apparatus, the 'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to study the dynamics in swift ion-atom collisions on an unprecedented level of precision and detail. In first experiments on collisions with 1.5 MeV/amu O8+^{8+}-Li the pure ionization of the valence electron as well as ionization-excitation of the lithium target has been investigated

    Dielectronic Recombination in Photoionized Gas. II. Laboratory Measurements for Fe XVIII and Fe XIX

    Get PDF
    In photoionized gases with cosmic abundances, dielectronic recombination (DR) proceeds primarily via nlj --> nl'j' core excitations (Dn=0 DR). We have measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe XIX to Fe XVIII Dn=0 DR. Using our measurements, we have calculated the Fe XVIII and Fe XIX Dn=0 DR DR rate coefficients. Significant discrepancies exist between our inferred rates and those of published calculations. These calculations overestimate the DR rates by factors of ~2 or underestimate it by factors of ~2 to orders of magnitude, but none are in good agreement with our results. Almost all published DR rates for modeling cosmic plasmas are computed using the same theoretical techniques as the above-mentioned calculations. Hence, our measurements call into question all theoretical Dn=0 DR rates used for ionization balance calculations of cosmic plasmas. At temperatures where the Fe XVIII and Fe XIX fractional abundances are predicted to peak in photoionized gases of cosmic abundances, the theoretical rates underestimate the Fe XVIII DR rate by a factor of ~2 and overestimate the Fe XIX DR rate by a factor of ~1.6. We have carried out new multiconfiguration Dirac-Fock and multiconfiguration Breit-Pauli calculations which agree with our measured resonance strengths and rate coefficients to within typically better than <~30%. We provide a fit to our inferred rate coefficients for use in plasma modeling. Using our DR measurements, we infer a factor of ~2 error in the Fe XX through Fe XXIV Dn=0 DR rates. We investigate the effects of this estimated error for the well-known thermal instability of photoionized gas. We find that errors in these rates cannot remove the instability, but they do dramatically affect the range in parameter space over which it forms.Comment: To appear in ApJS, 44 pages with 13 figures, AASTeX with postsript figure
    corecore